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Laminar Mixing of Heterogeneous
Axisymmetric Coaxial Confined Jets

Kirti N. Guia,* T. PauL Torpa,T AND ZALMAN Lavan
Illinots Institute of Technology, Chicago, Il.

Confined laminar mixing of dissimilar circular axisymmetric jets is studied. The system
considered is binary, isothermal, and nonreacting. The central jet consists of a slow-moving
heavy gas and the coflowing annular stream is a fast-moving light gas. This system is char-
acteristic of a gas-core nuclear reactor where minimum mixing is desired. The boundary-
layer equations are used to describe the confined jet mixing problem and the solution is ob-
tained numerically by an explicit finite difference scheme. Solutions were obtained for a
wide range of velocity ratio, density ratio, radius ratio, viscosity ratio, and outer stream
Reynolds number and Schmidt number. Results are obtained in the form of velocity and
mass fraction fields, and radial profiles for some typical runs are presented. The results show
that an increase in the jet velocity U, causes an increase of the mass fraction potential core
length L, slower decay of the centerline velocity and mass fraction, and a wider jet as well as
larger developing length. Further, an increase in the jet density p: reduces the centerline
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velocity in the mixing region and increases the developing length.

Nomenclature

Dy = diffusion coefficient for binary system

M; = molecular weight of component ¢

m = transverse coordinate for discretized problem

n = axial coordinate for discretized problem

Ng.,» = Reynolds Number of outer stream, Nge, = 2(R —
RB)HUs/ve

Nge2 = Schmidt Number based on outer stream, N2 = »2/ D12

P = static pressure

R = radius of confining pipe

Ry = radius of inner jet tube

r = radial coordinate

U = average axial velocity of over-all flow

Uy = average axial velocity of inner stream

U, = average axial velocity of outer stream

vy = mass average radial velocity :

V2 = mass average axial velocity; nondimensional axial
velocity

v;; = nondimensional centerline axial velocity

z; = mole fraction of species 7

z = axial coordinate

Az = step size in z direction

A¢ = step size in ¢ direction

7 = containment factor,
n = 27 j‘()szR pwﬁ”d?“dz /pp,17rR1?Z

P = dynamic viscosity

v = kinematic viscosity

p = mass average density

® = value of ¢ at confining pipe wall

¢ = transverse coordinate in ¢-z plane

¥ = Stokes’ stream function; transverse coordinate in von
Mises plane

w; = mass fraction of species 7

w,» = wall mass fraction
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Subscripts
1

If

refers to inner stream, i.e., species 1
refers to outer stream, i.e., species 2
species ¢

pure component

Ihl

2
2
p

Introduction

LTHOUGH laminar jet mixing has been investigated for

both incompressible and compressible cases, most of the
work is limited to the unconfined, i.e., freejet mixing. The
more complex case of confined jet mixing has not been studied
in sufficient detail. This type of mixing occurs in jet pumps,
ejectors, jet engine combustion chambers and in coaxial
gaseous core reactors for nuclear rockets,'™® where a low-
velocity fissionable gas is ejected coaxially into a high-
velocity hydrogen propellant stream. For optimum per-
formance of such an engine, it is necessary to reduce the loss
of the fissionable component, i.e., to minimize mixing. In
order to study this complex flow, the investigation of the
mixing of laminar, isothermal, nonreacting confined hetero-
geneous jets is useful.

In 1964, Wood* studied analytically, as well as experi-
mentally, the mixing of confined jets. For nearly equal
entrance velocities, the ecalculated concentration profiles
compare well with the experimental data. In 1966, Seider?®
performed = analytical studies of laminar incompressible
homogeneous confined jet mixing with and without chemical
reaction. For the nonreacting case, the results are in good
agreement with the concentration measurements of Wood.
Fejer et al.’ carried out experimental as well as analytical
studies of the confined mixing of coaxial streams; and pointed
out that the results are in good agreement with Wood’s* data
for wall concentration. Unsteady as well as steady homogen-
eous mixing of confined laminar jets were studied by Agarwal
and Torda.” Agreement with Seider’s results is satisfactory.

In the present investigation, laminar coaxial confined
heterogeneous mixing of incompressible jets is being studied
analytically. The objective is to obtain the velocity and
concentration fields in the mixing and developing regions,
and to determine effects of the various parameters on mixing
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in order to understand the basic flow phenomena occurring
in confined coaxial jet mixing.

Mathematical Model

The jet mixing problem to be studied is represented mathe-
matically by the boundary-layer equations with appropriate
boundary conditions. Auxiliary expressions are used to
determine the local thermodynamic and transport properties
of the fluid medium.

The use of the boundary-layer equations may be supported
by the success with which they have been applied in the in-
vestigation of unconfined mixing.3-® Their application to
the confined jet problem is justified in Ref. 7 and also in the
discussion of the results in this paper. Thus, the mathe-
matical model is based on the following assumptions: 1)
the boundary-layer assumptions; 2) steady-state, isothermal
flow without body forces and chemical reaction; 3) incom-
pressible component fluids; and 4) invariance of binary
diffusivity Dy, with concentration. A typical jet entrance
region for confined jet mixing is shown in Fig. 1a.

Formulation of Problem in Physical Plane (r,s)

Continuity equation

(0/or)(pro.) + (0/02)(prv:) = 0 ®
Momentum equation
v, o, _ dp 10 ov,
PO or s oz dz T <'w br) @
Diffusion equation
0wy ow _ 10 0w
Py TP = <7‘le2 or > @)
\Expression for density0
w1 /M
p = 1/ - [Pp:l - va‘l] + Ppe (4)

wl/ﬂéfl + (,02/11’{2

Expression for viscosity of a binary mixture!
2

2
M= D ik, 21 Tii; (5)
=

i=1

where

1 Ml —1/2 Wi 1/2 ]"[j 1/47]|2

=gl i) LG e
In the present analysis Dis is constant, but for generality
it is retained as a variable. For a unique solution, the
pressure gradient dp/dz must be either prescribed or com-
puted for any flow problem governed by the boundary-layer
equations. Here, dp/dz was determined from the conserva-
tion of mass flow rate across any cross section in the flow re-
gion. Use of this constraint together with the momentum
equation yields an explicit equation for dp/dz. This equa-

tion will be referred to as the equation of constraint.

Equation of Constraint

ap _ 1 fR r
“ —fRidr 0 vzx
0 v,
Ow;/0z -
v,? (:1/ ws |2 [po1 — Pp,g] dr (‘)
v, 10 v,
Py T [“” ar]
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Fig. 1la Typical confined jet entrance region and coordi-
nate system.
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Fig. 1b Discretized rectangular grid system in jet en-
trance region.

Boundary Conditions

1) At the initial section, i.e., at 2 = 0

D) fo<r<R

v:(r,0) = gxfm it R <r <R

0(r0) = 0 #0<r<R ®)
(N0 HO0<r<R

wi(r0) = im R <r <R

In this study A(r), Aa(r), As(r), and Ay(r) were chosen to be
constants.

0
(3w1/37)17=0 =0 (9)

I

2) At the centerline, i.e., at r
1,(0,2) = (Qv:/0r)|r=0

3) At the wall, i.e.,atr = R
1Rz = v (Rz2) = (Qw/Or)|,—g = 0 (10)

Equations (1-10) complete the formulation of the jet
mixing problem. The von Mises transformation is used in
this analysis for obtaining the solution.

I

von Mises Transformation

The stream function is defined by
oY /Or = pur, dY/dz = —pur (11)
and the inverse transformation is given by

vy
0 pv,

r2 =2

(12)

In this study, the number of ¥ grid points representing the
inner stream decreases as the ratio of the mass fluxes of the
outer to the inner streams increases. Hence, to obtain a
proper finite difference representation of the inner stream for
these large mass flux ratios without unreasonably increasing
the number of steps in y direction, a transformation is used to
stretch the y coordinate in the region of the inner stream.
This transformation, denoted as the ¢ transformation, and
the corresponding transformed equations and boundary
conditions are presented next.
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Fig. 2 Flow diagram for numerical solution.

Formulation of Problem in ¢-Transform
Plane (¢,z)

The ¢ transformation is defined by
¢ = yl/= (13)
where

1 when pUi/peUs >~ 1
“= 2 when pUi/pU., K 1

The equations in the von Mises plane correspond to a = 1.
The inverse ¢ transformation is defined by

T2 _ 2 do
,]:"1 rdr = f o oo deb/ (14)

Equations (2, 3, and 7) transform to

ov. _ —1dp | d¢ a[ , d¢bv] a5
o punde " dpos | M P dy og
Ow; _ 0¢p O de dux
2% ~op a¢[ D a¢>] -
dp 1 ®
dz f<1> de fo x
0 pv2de/dy
= pu;T d¢o¢ (ov:)
awl Pp.1 — Pp.2 d¢ -
sl BT AT P g
X dp avz]
"dw 26 |17 4y o9

The continuity equation (1) is satisfied identically by the
definition of the stream function. For variable density
flows, however, the radial velocity o, can be evaluated from
Eq. (1) by solving it for d(rv,)/dr. Thus, the radial velocity
appearing in Eq. (17) is evaluated from the equation of con-
tinuity in the transformed plane

dq&b( ) =r &d_‘ﬁa_”_i%_l% (18)
dy 0¢ v:AdY Op  pv. Oz p? Oz
The auxiliary expressions (4-6) for p, u remain unaffected by
the transformation.
Boundary Conditions
The transformed boundary conditions are

1) At the initial section, i.e., z = 0,
v, v and w, are specified functions of ¢ (19)
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2) At the centerline, i.e., at ¢ = 0
2:(0,2) = (00./09)|9=0 = Qw1 /OP)|s=0 = 0  (20)
3) At the wall, i.e., at ¢ = @

v(®2) = 0,(®,2) = 0w/0$)|p-2 = 0 21

On the centerline, Egs. (15) and (16) become
0v./02 = —(1/pv:)dp/dz + pod%./0¢? (22)
0w /0z = pD120%w/0¢* (23)

Thus, the flow problem is completely represented by Kgs.
(15-18) [together with Eqs. (22) and (23) for the centerline]
and the boundary conditions (19-21).

Method of Solution

A forward-marching all-explicit numerical method is used
in this analysis. The discretized rectangular grid and the
coordinate system used to solve the problem are shown in
Fig. 1b. For the transverse derivatives, central differences
are used in the interior of the duct and backward differences
are used at the duct wall. Forward differences are used for
axial derivatives everywhere except in the equation for de-
termining v, where the axial derivatives are approximated
by backward differences; the reason for this is given in Ref. 7.

The stability conditions for the finite difference equations
are obtained by using the criterion developed by Karplus.!
These conditions are realizable for nonnegative axial veloci-
ties, and are similar to those obtained by von Neumann’s
method.?

Stability Conditions

For momentum equation (15), A¢ is not limited from sta-
bility considerations and is selected from the required resolu-
tion and the aceuracy of the flow problem, and

Az < [(1/20)(1/r%%:) {1/ (dp/d)?} TmnA?  (24)

For the diffusion equation (16), there is no restriction on
A, and

Az < [(Nso/20)(1/r%0%2) {1/(d/dY)?} 1mn B2 (25)

The stability conditions of Eqs. (22) and (23) are less
stringent than conditions (24) and (25). The more restrictive
of conditions (24) and (25) is utilized in the numerical
solution. Equations (17), (18), and the auxiliary expressions
(4-6) are unconditionally stable.

The sequence of operations for obtaining the numerical
solution is summarized in the simplified flow diagram pre-
sented in Fig. 2. An IBM 360/40 computer is used to solve
the flow equations and the time required to obtain the solu-
tion for a typical case is approximately 10 min.

Results and Discussion

A detailed parametric study of confined jet mixing using
laminar boundary-layer equations was carried out. The
validity of the boundary-layer equations for the present
flow conditions was checked by calculating second-order
derivatives of the axial velocity v. and the mass fraction w;.
The axial derivatives were at least three orders of magnitude
smaller than the corresponding transverse derivatives. Also,
the radial velocity profiles showed only a low net radial flow,
so that the normal pressure gradient could indeed be ne-

Table 1 Range of parameters

UZ/U1 Pl/P2 R1/R Nges Nsco P2/P1
1-30 1-8.3 0.28-0.563 1000-2000 0.75-2.0 0.75-2.0
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glected, thus indieating that the boundary-layer assumptions
hold good for confined jet mixing even in the near region for
the range of parameters considered. Similar checks were
used by Weinstein and Todd? to justify the use of the bound-
ary-layer equations for unconfined mixing of streams with
velocity ratio U,/U; = 100 and density ratio pi/ps = 100.

A few remarks regarding the use of the laminar flow model
in the present analysis may also be in order. Very limited
experimental results concerning the stability of confined jet
mixing flows are available at the present. Ragsdale et
al.’® and Taylor and Masser'* carried out experiments with
a bromine-air system having a radius ratio B,/R = 0.125 and
predicted the range of laminar flow for such a jet mixing
system. From these experiments, it is felt that the range
of parameters considered in the present study is approxi-
mately within the range of laminar flow. Moreover, con-
sideration of a wide range of parameters better enables the
study of the over-all trends in the flow.

Direct comparison of the results with experimental data
is not possible. Therefore, the problem of laminar confined
mixing of jets of equimolecular weight streams was solved
and the concentration profiles were compared with the ex-
perimental results of Wood.* Figure 3 shows that good
agreement is obtained. Finally, as a partial check on the
results of the present problem, the fully developed values
of the flow parameters v.(r,2), wi(r,2), and dp/dz were com-
pared with the corresponding asymptotic values that were
obtained independently from theoretical considerations.
The agreement of these asymptotic values gave further reli-
ance on the numerical results.

A total of 57 cases was investigated. The basis of these
runs was an air-Freon system. The range of values of the
parameters studied includes many physical systems of practi-
cal interest. This range is shown in Table 1.

The transformation of the problem from the physical
plane to the von Mises plane, or further to the ¢-z plane, was
performed mainly to avoid numerical instabilities at high-
velocity ratio U,/U;. However, it was found later that
when the velocity ratio Us/U, reached a value where a stable
solution was not obtainable, increasing the density ratio
p1/pz stabilized the solution. Therefore, it appears that the
mass flux ratio Usps/Uipy, rather than the velocity ratio
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Fig. 3 Comparison of mass fraction profiles with Wood’s
experimental data.
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Fig. 4 Effects of variations of parameters on mass frac-
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U,/ U, alone, is the governing parameter for a stable con-
vergent numerical solution. Similarly, decreasing the radius
ratio Ry/R further increases the range of mass flux ratios for
which a stable solution can be obtained. It was observed
that the other parameters of the problem also affected the
range for which stable solutions are obtainable. An attempt
was made to obtain a correlation of all the parameters show-
ing the bounds of the stable region, but no suitable correla-
tion was found. Stable solutions were not obtainable for
values of parameters beyond the range for which results are
presented.

Because of the dominating nonlinear effects, some of the
investigated cases demanded a step size considerably smaller
than those predicted by stability analysis. These cases
have been studied only for small distances downstream be-
cause of the increased computer time requirements. In the
graphical results presented the velocity has been made non-
dimensional with respect to Us.

The results of the 57 cases investigated for the parametric
study present the effects of six parameters—Us/Ui, pi/ps,
Ri/R, Ngeo, Nsen, and u»/pr—on the mass fraction potential
core L, the centerline velocity v..1, the wall mass fraction
w1, and the containment factor n. The variation of these
six parameters was achieved by varying Us, g1, Br, Us, Dy,
and m, respectively. Larger Lo, and 7, and smaller v.,, are
desired for minimum mixing, whereas,’ to reduce spreading of
the inner jet, smaller w;,,, is essential.

Effects of Flow Parameters on Lo§

Figure 4 presents the effects of the various parameters on
the length of the mass fraction potential core Ly, As Uy/Us
decreases or pi/ps increases, the momentum deficiency be-
tween the two streams is reduced, thereby resulting in slower
mixing and, consequently, larger L., Also, retarded diffu-
sion, arising from higher Ng... or relatively smaller viscous
effect owing to increase in Ng. yield a larger L.. The
effect of change of Nges on Ly, remain similar when R,/E is
reduced and U,/ U; is simultaneously increased substantially.

§ L, is the value of z where the mass fraction w at the center-
line has changed by less than 5 9 from its original centerline
value.
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Fig. 5 Centerline velocity vs downstream distance: a)
and b) R;/R = 0.563, Nge, = 15003 ¢) and d) pi/p: = 4.2,
pe/p = 1.48.

Effects of Flow Parameters on v,

Figure 5 presents the effects of the parameters on the
centerline axial velocity v.,,. For incompressible flow, the
asymptotic centerline velocity depends only on the radius
ratio B:1/R and the entrance velocities, so that the effect of
the other parameters is confined to the mixing region only.
An increase in p1/p» reduces the velocity in the mixing region,
since comparatively heavier inner jet has now to be accel-
erated, while an increase in R,/R increases the amount of
heavier fluid, thereby retarding the development of the fow.
Also, the centerline velocity in the mixing region is lowered
for higher Nz.» and Ny

Fig. 6 Wall mass fraction vs downstream distance: a)
and b) NRe.Z = 1500, Nsc,z = 1.52, ,uz/;u = 1.418; c) and d)
pl/pg = 4.2, Rl/R = 0-563, MZ/Ml = 1.48.

Effects of Flow Parameters on wy,,,

The influence of the parameters on the wall mass fraction
w1, i8 presented in Fig. 6. The asymptotic value of the mass
fraction depends only on the ratio Us/Ui, pi/ps, and Ry/R
for incompressible flow; hence the effect of the other param-
eters is felt in the initial mixing region only. Faster mixing
is associated with a narrower mixing region, hence, an in-
crease of Us/U, or a decrease of py/ps, that increase mixing,
decreases the wall mass fraction wi,». A decrease of Ri/R
results in a narrower inner jet and hence, the wall mass frac-
tion wy,» is lowered. The wall mass fraction wi,., decreases
as Ngeo or Ng.,s increase, the effect of Ns.: being more
pronounced.
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Effects of Flow Parameters on 7

Figure 7 presents the effects of the parameters on the
containment factor 5. Eta increases as Us/U; decreases or
as pi/p2 and Ri/R increase, indicating a reduction in the de-
pletion of the inner jet. Increase of Nges or Ns.» increases
7 because higher Ng.» implies lower viscous interaction and
higher N s..» results in slower diffusion.

94 = mass of species 1 in a given volume (between the en-
trance section and a section downstream) of the confining duct
divided by the mass of species 1 in the same volume had there
been no mixing. Expressed mathematically

R
7 = 2% j;zj‘o pwﬁ“drdz/pp,urRﬁz
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Fig. 8 Axial velocity profiles; R;/R = 0.563, Nr.,» = 1500.

Velocity and Mass Fraction Fields for Typical Runs

Figure 8 shows the development of the axial velocity pro-
files; the developing profiles of mass fraction w; are presented
in Fig. 9. An increase in developing length results from a
decrease in U,/U; or an increase in pi/ps. A decrease in
U;/U; leads to more gradual change of the centerline values,
ie., slower mixing and wider jet. An experimental investi-
gation of coaxial turbulent mixing of heterogeneous jets has
been recently completed by Zawacki and Weinstein.'® The
measured effects of Us/U; and pi/ps on the jet mixing agree
qualitatively with the predietion of this analysis.

For a few combinations of the flow parameters near the
extremes of the viscosity ratio range, a positive pressure
gradient or an oscillatory negative pressure gradient was
observed in the initial region. For these cases the fully
developed values agreed less favorably and it appears that
the initial region was most affected. This behavior is not
completely understood as yet and further investigation may
be necessary. Also, for the cases investigated, the effect
of change in us/p; was small, so that no definite trend of this
effect could be established. The original aim of the von Mises
transformation or the ¢ transformation was to obtain stable
solutions for a wide range of flow parameters. Experience
with a similar jet mixing problem in the r-z plane revealed
that the range in the Y-z or the ¢-z plane was not much
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wider. Therefore, it may be worthwhile to solve the present
flow problem in the physical plane where nonuniform en-
trance profiles can be studied more conveniently.

Conclusions

The results provide detailed information of laminar, in-
compressible coaxial, confined jet mixing for most of the
parameters of practical interest and predict mixing for con-
fined flow configurations that are difficult to investigate
experimentally. '

An increase in Nge» or Ns.» reduces mixing and at the
same time, results in decrease of mass fraction at the wall.
Also, a decrease in U,/U; or an increase in pi/p: decreases
mixing, while it simultaneously increases the mass fraction
at the wall. In the design of gas-core nuclear reactors,
minimum mixing as well as low wall mass fraction are de-
sired, hence, a compromise has to be made while choosing
the problem parameters. The findings that the length of
the mass fraction potential core L. increases as Uy/U; de-
creases and that the rate of mixing decreases as pi/p: increases
are in qualitative agreement with experimental observations'
of somewhat similar turbulent flows.

ATAA JOURNAL

Hence, this study provides trends that may be useful in
understanding turbulent jet mixing and may yield informa-
tion concerning the hydrodynamies of gas-core nuclear reac-
tors. The numerical method has shown sufficient success
to warrant further development to study the effects of com-
pressibility and turbulence.
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