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Laminar Mixing of Heterogeneous
Axisymmetric Coaxial Confined Jets

KIRTI N. GHIA,* T. PAUL ToRDA,f AND ZALMAN LA VAN J
Illinois Institute of Technology, Chicago, III.

Confined laminar mixing of dissimilar circular axisymmetric jets is studied. The system
considered is binary, isothermal, and nonreacting. The central jet consists of a slow-moving
heavy gas and the coflowing annular stream is a fast-moving light gas. This system is char-
acteristic of a gas-core nuclear reactor where minimum mixing is desired. The boundary-
layer equations are used to describe the confined jet mixing problem and the solution is ob-
tained numerically by an explicit finite difference scheme. Solutions were obtained for a
wide range of velocity ratio, density ratio, radius ratio, viscosity ratio, and outer stream
Reynolds number and Schmidt number. Results are obtained in the form of velocity and
mass fraction fields, and radial profiles for some typical runs are presented. The results show
that an increase in the jet velocity U\ causes an increase of the mass fraction potential core
length JLW1, slower decay of the centerline velocity and mass fraction, and a wider jet as well as
larger developing length. Further, an increase in the jet density pi reduces the centerline
velocity in the mixing region and increases the developing length.
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Nomenclature

diffusion coefficient for binary system
molecular weight of component i
transverse coordinate for discretized problem
axial coordinate for discretized problem
Reynolds Number of outer stream, NR€,Z = 2(R —

Schmidt Number based on outer stream, Nsc.z =
static pressure
radius of confining pipe
radius of inner jet tube
radial coordinate
average axial velocity of over- all flow
average axial velocity of inner stream
average axial velocity of outer stream
mass average radial velocity
mass average axial velocity; nondimensional axial

velocity
nondimensional centerline axial velocity
mole fraction of species i
axial coordinate
step size in z direction
step size in <j> direction
containment factor,

= 2 I I
Jo Jo

puirdrdz
dynamic viscosity
kinematic viscosity
mass average density
value of 0 at confining pipe wall
transverse coordinate in (j>-z plane
Stokes' stream function; transverse coordinate in von

Mises plane
mass fraction of species i
wall mass fraction
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Subscripts
1 = refers to inner stream, i.e., species 1
2 = refers to outer stream, i.e., species 2
i = species i
p = pure component

Introduction

ALTHOUGH laminar jet mixing has been investigated for
both incompressible and compressible cases, most of the

work is limited to the unconfined, i.e., freejet mixing. The
more complex case of confined jet mixing has not been studied
in sufficient detail. This type of mixing occurs in jet pumps,
ejectors, jet engine combustion chambers and in coaxial
gaseous core reactors for nuclear rockets,1"3 where a low-
velocity fissionable gas is ejected coaxially into a high-
velocity hydrogen propellant stream. For optimum per-
formance of such an engine, it is necessary to reduce the loss
of the fissionable component, i.e., to minimize mixing. In
order to study this complex flow, the investigation of the
mixing of laminar, isothermal, nonreacting confined hetero-
geneous jets is useful.

In 1964, Wood4 studied analytically, as well as experi-
mentally, the mixing of confined jets. For nearly equal
entrance velocities, the calculated concentration profiles
compare well with the experimental data. In 1966, Seider5

performed . analytical studies of laminar incompressible
homogeneous confined jet mixing with and without chemical
reaction. For the nonreacting case, the results are in good
agreement with the concentration measurements of Wood.
Fejer et al.,6 carried out experimental as well as analytical
studies of the confined mixing of coaxial streams; and pointed
out that the results are in good agreement with Wood's4 data
for wall concentration. Unsteady as well as steady homogen-
eous mixing of confined laminar jets were studied by Agarwal
and Torda.7 Agreement with Seider's results is satisfactory.

In the present investigation, laminar coaxial confined
heterogeneous mixing of incompressible jets is being studied
analytically. The objective is to obtain the velocity and
concentration fields in the mixing and developing regions,
and to determine effects of the various parameters on mixing
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in order to understand the basic flow phenomena occurring
in confined coaxial jet mixing.

Mathematical Model

The jet mixing problem to be studied is represented mathe-
matically by the boundary-layer equations with appropriate
boundary conditions. Auxiliary expressions are used to
determine the local thermodynamic and transport properties
of the fluid medium.

The use of the boundary-layer equations may be supported
by the success with which they have been applied in the in-
vestigation of unconfined mixing.8'9 Their application to
the confined jet problem is justified in Ref. 7 and also in the
discussion of the results in this paper. Thus, the mathe-
matical model is based on the following assumptions: 1)
the boundary-layer assumptions; 2) steady-state, isothermal
flow without body forces and chemical reaction; 3) incom-
pressible component fluids; and 4) invariance of binary
diffusivity D^ with concentration. A typical jet entrance
region for confined jet mixing is shown in Fig. la.

Formulation of Problem in Physical Plane (r,z)

Continuity equation

Momentum equation

CONFINING DUCT BOUNDARIES OF

dvg ~dvz dp I d
pvr -^- + pvz -r- = — ~r + - ^rdr bz dz rdr

Diffusion equation

pv dr

Expression for density10

] dcoi 1 5 / _. dcoA+ pvz — - = - — I rpD12 — }dz rdr\ dr /

P = [PP.I ->I/MI + co-2/
Expression for viscosity of a binary mixture10

Pp,2

2
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In the present analysis Z>i2 is constant, but for generality
it is retained as a variable. For a unique solution, the
pressure gradient dp/dz must be either prescribed or com-
puted for any flow problem governed by the boundary-layer
equations. Here, dp/dz was determined from the conserva-
tion of mass flow rate across any cross section in the flow re-
gion. Use of this constraint together with the momentum
equation yields an explicit equation for dp/dz. This equa-
tion will be referred to as the equation of constraint.

Equation of Constraint

dp 1
dz S*R r_
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Fig. la Typical confined jet entrance region and coordi-
nate system.
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Fig. Ib Discretized rectangular grid system in jet en-
trance region.

Boundary Conditions

1) At the initial section, i.e., at z = 0

,(r) if 0 < r < Ri

vr(r,Q) = 0

= jX8(r)
X4(r)

if 0 < r < R
if 0 < r < Ri
if Ri < r < R

(8)

In this study \i(r), X2(r), X3(r), and X4(r) were chosen to be
constants.

2) At the centerline, i.e., at r = 0

= o = 0

3) At the wall, i.e., at r = R

vs(R,z) = vr(R,z) =

(9)

(10)
Equations (1-10) complete the formulation of the jet

mixing problem. The von Mises transformation is used in
this analysis for obtaining the solution.

von Mises Transformation

The stream function is defined by

di/'/dr = pvzr, di/'/diS = —pvrr

and the inverse transformation is given by

/* $ d$
Jo Pvz

(11)

(12)

In this study, the number of ty grid points representing the
inner stream decreases as the ratio of the mass fluxes of the
outer to the inner streams increases. Hence, to obtain a
proper finite difference representation of the inner stream for
these large mass flux ratios without unreasonably increasing
the number of steps in \// direction, a transformation is used to
stretch the \// coordinate in the region of the inner stream.
This transformation, denoted as the 4> transformation, and
the corresponding transformed equations and boundary
conditions are presented next.
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= 0 = 0 (20)

(21)

Fig. 2 Flow diagram for numerical solution.

2) At the centerline, i.e., at <t> = 0

vr(Q,z) = (5^/50)10 = 0 = (5co
3) At the wall, i.e., at 0 = $

^($,z) = wr($,2) = (5coi/50)U = <3> = 0
On the centerline, Eqs. (15) and (16) become

dvz/dz = -(l/pvz)dp/dz + ju5V502 (22)

5aV52 - PA25V/502 (23)

Thus, the flow problem is completely represented by Eqs.
(15-18) [together with Eqs. (22) and (23) for the centerline]
and the boundary conditions (19-21).

Formulation of Problem in ^-Transform
Plane (0,*)

The 0 transformation is defined by
0 = ^V«

where
f 1 when piUi/pzUz ^ 1

(13)

2 when « 1

The equations in the von Mises plane correspond to a = 1.
The inverse 4> transformation is defined by

X r, /* 02
rdr = I —

•i J 0i p^z

Equations (2, 3, and 7) transform to

pz;3 dz ^~ rf^ 50

^-S^FrVA,

r PVzz dt 50 J

(14)

(15)

(16)

dp
dz rJo

X

pvz
2 d<t>/d\f/

+ (17)

The continuity equation (1) is satisfied identically by the
definition of the stream function. For variable density
flows, however, the radial velocity vr can be evaluated from
Eq. (1) by solving it for 5(n;r)/5r. Thus, the radial velocity
appearing in Eq. (17) is evaluated from the equation of con-
tinuity in the transformed plane

dd> c) . . vr dd> dv
—— — ——— (/V"n \ — - «• —— —— L ———

d\f/ d0 ^ r) vz d\f/ 50 pv
U,y>\JUZ i <~W2 i \J}J

37. ^n ~ ~r ̂ r — ~9 ̂ : d^J
dp
— -

p dz

The auxiliary expressions (4-6) for p, pt remain unaffected by
the transformation.

Method of Solution

A forward-marching all-explicit numerical method is used
in this analysis. The discretized rectangular grid and the
coordinate system used to solve the problem are shown in
Fig. Ib. For the transverse derivatives, central differences
are used in the interior of the duct and backward differences
are used at the duct wall. Forward differences are used for
axial derivatives everywhere except in the equation for de-
termining vr where the axial derivatives are approximated
by backward differences; the reason for this is given in Ref. 7.

The stability conditions for the finite difference equations
are obtained by using the criterion developed by Karplus.11

These conditions are realizable for nonnegative axial veloci-
ties, and are similar to those obtained by von Neumann's
method.12

Stability Conditions

For momentum equation (15), A0 is not limited from sta-
bility considerations and is selected from the required resolu-
tion and the accuracy of the flow problem, and

A« < [(1/2*)(1/rW !VW/d>A)2} ]»,»A^>2 (24)

For the diffusion equation (16), there is no restriction on
A0, and

Az < [(AW2^)(1 AW {l/(d0/<ty02} U.A02 (25)

The stability conditions of Eqs. (22) and (23) are less
stringent than conditions (24) and (25). The more restrictive
of conditions (24) and (25) is utilized in the numerical
solution. Equations (17), (18), and the auxiliary expressions
(4-6) are unconditionally stable.

The sequence of operations for obtaining the numerical
solution is summarized in the simplified flow diagram pre-
sented in Fig. 2. An IBM 360/40 computer is used to solve
the flow equations and the time required to obtain the solu-
tion for a typical case is approximately 10 min.

Results and Discussion

A detailed parametric study of confined jet mixing using
laminar boundary-layer equations was carried out. The
validity of the boundary-layer equations for the present
flow conditions was checked by calculating second-order
derivatives of the axial velocity vz and the mass fraction coi-
The axial derivatives were at least three orders of magnitude
smaller than the corresponding transverse derivatives. Also,
the radial velocity profiles showed only a low net radial flow,
so that the normal pressure gradient could indeed be ne-

Boundary Conditions

The transformed boundary conditions are

1) At the initial section, i.e., 2 = 0,
vg) vr and coi are specified functions of (19)

Table 1 Range of parameters

Uz/Ul P1/P2 Ri/R PI/PI
1-30 1-8.3 0.28-0.563 1000-2000 0.75-2.0 0.75-2.0
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glected, thus indicating that the boundary-layer assumptions
hold good for confined jet mixing even in the near region for
the range of parameters considered. Similar checks were
used by Weinstein and Todd9 to justify the use of the bound-
ary-layer equations for unconfined mixing of streams with
velocity ratio U-^/Ui = 100 and density ratio pi/p2 = 100.

A few remarks regarding the use of the laminar flow model
in the present analysis may also be in order. Very limited
experimental results concerning the stability of confined jet
mixing flows are available at the present. Ragsdale et
al.13 and Taylor and Masser14 carried out experiments with
a bromine-air system having a radius ratio Ri/R = 0.125 and
predicted the range of laminar flow for such a jet mixing
system. From these experiments, it is felt that the range
of parameters considered in the present study is approxi-
mately within the range of laminar flow. Moreover, con-
sideration of a wide range of parameters better enables the
study of the over-all trends in the flow.

Direct comparison of the results with experimental data
is not possible. Therefore, the problem of laminar confined
mixing of jets of equimolecular weight streams was solved
and the concentration profiles were compared with the ex-
perimental results of Wood.4 Figure 3 shows that good
agreement is obtained. Finally, as a partial check on the
results of the present problem, the fully developed values
of the flow parameters vz(r,z), coi(r,2), and dp/dz were com-
pared with the corresponding asymptotic values that were
obtained independently from theoretical considerations.
The agreement of these asymptotic values gave further reli-
ance on the numerical results.

A total of 57 cases was investigated. The basis of these
runs was an air-Freon system. The range of values of the
parameters studied includes many physical systems of practi-
cal interest. This range is shown in Table 1.

The transformation of the problem from the physical
plane to the von Mises plane, or further to the (j>-z plane, was
performed mainly to avoid numerical instabilities at high-
velocity ratio Uz/Ui. However, it was found later that
when the velocity ratio U2/Ui reached a value where a stable
solution was not obtainable, increasing the density ratio
Pi/p2 stabilized the solution. Therefore, it appears that the
mass flux ratio U^pz/Uipi, rather than the velocity ratio

O WOODS EXPERIMENTAL DATA
RUNS 7,11,33-35

0 10 20 30 40 50
NUMBER OF RADII DOWNSTREAM z/R

0.4 0.6
RADIUS r/R

VELOCITY RATIO U2/U,

^•=.563 NRe, 2=I500

750 1000 1500 2000
REYNOLDS NUMBER NRe 2

NSc.2=l-52 = '-

0.5 1.0 1.5 2.0
VISCOSITY RATIO/^i,
U2 R I-2=15 = ,563

0.5 1.0 1.5 2.0
SCHMIDT NUMBER NSc.2

U2 Rl
^ = '5 F='563

Fig. 4 Effects of variations of parameters on mass frac-
tion potential core JLcoi.

U-2/Ui alone, is the governing parameter for a stable con-
vergent numerical solution. Similarly, decreasing the radius
ratio Ri/R further increases the range of mass flux ratios for
which a stable solution can be obtained. It was observed
that the other parameters of the problem also affected the
range for which stable solutions are obtainable. An attempt
was made to obtain a correlation of all the parameters show-
ing the bounds of the stable region, but no suitable correla-
tion was found. Stable solutions were not obtainable for
values of parameters beyond the range for which results are
presented.

Because of the dominating nonlinear effects, some of the
investigated cases demanded a step size considerably smaller
than those predicted by stability analysis. These cases
have been studied only for small distances downstream be-
cause of the increased computer time requirements. In the
graphical results presented the velocity has been made non-
dimensional with respect to Ui.

The results of the 57 cases investigated for the parametric
study present the effects of six parameters—C72/£/i, P1/P2,
Ri/R, NRe,2, NSc,2, and ju2/Mi—on the mass fraction potential
core LW1, the centerline velocity vz,i, the wall mass fraction
COL*,, and the containment factor 77. The variation of these
six parameters was achieved by varying Ui, pi, RI, U%, D^,
and ̂  respectively. Larger LUl and 77, and smaller vz,i are
desired for minimum mixing, whereas,'to reduce spreading of
the inner jet, smaller coi,«, is essential.

Effects of Flow Parameters on LOM§

Figure 4 presents the effects of the various parameters on
the length of the mass fraction potential core Z/W1. As Uz/Ui
decreases or pi/p2 increases, the momentum deficiency be-
tween the two streams is reduced, thereby resulting in slower
mixing and, consequently, larger LW1. Also, retarded diffu-
sion, arising from higher Nsc,2 or relatively smaller viscous
effect owing to increase in NRe,<t, yield a larger LM1. The
effect of change of NRe.z on LW1 remain similar when Ri/R is
reduced and U^/Ui is simultaneously increased substantially.

Fig. 3 Comparison of mass fraction profiles with Wood's
experimental data.

§ Lai is the value of z where the mass fraction «i at the center-
line has changed by less than 5 % from its original centerline
value.
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Fig. 5 Centerline velocity vs downstream distance: a)
and b) tfi/K = 0.563, N^A = 1500; c) and d) Pi/P2 = 4.2,

1-48.

150.0 200,0

NUMBER OF RADII DOWNSTREAM z/R
d)

Fig. 6 Wall mass fraction vs downstream distance: a)
and b) JVRe,2 = 1500, JVSc,2 = 1.52, M2/Mi = 1.48; c) and d)

Pi/p2 = 4.2, R!/R = 0.563, M2/Mi = 1.48.

Effects of Flow Parameters on vz,i

Figure 5 presents the effects of the parameters on the
centerline axial velocity vz,i. For incompressible flow, the
asymptotic centerline velocity depends only on the radius
ratio Ri/R and the entrance velocities, so that the effect of
the other parameters is confined to the mixing region only.
An increase in pi/p2 reduces the velocity in the mixing region,
since comparatively heavier inner jet has now to be accel-
erated, while an increase in Ri/R increases the amount of
heavier fluid, thereby retarding the development of the flow.
Also, the centerline velocity in the mixing region is lowered
for higher NRe,2 and Nsc,*.

Effects of Flow Parameters on ullW

The influence of the parameters on the wall mass fraction
colt«, is presented in Fig. 6. The asymptotic value of the mass
fraction depends only on the ratio U2/Ui, pi/p2, and Ri/R
for incompressible flow; hence the effect of the other param-
eters is felt in the initial mixing region only. Faster mixing
is associated with a narrower mixing region, hence, an in-
crease of Uz/Ui or a decrease of pi/p23 that increase mixing,
decreases the wall mass fraction wi,u>. A decrease of Ri/R
results in a narrower inner jet and hence, the wall mass frac-
tion coitU, is lowered. The wall mass fraction coi,M decreases
as NRe,2 or Nse.z increase, the effect of Nsc.2 being more
pronounced.
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Fig 7 Containment factor vs downstream distance: a)
and b) 7VRe,2 = 1500, NSc,2 = 1.52, ju2/Mi = 1-48; c) and d)

P1/P2 = 4.2, Ri/R = 0.563, ^2/^1 = 1-48.

Effects of Flow Parameters on ̂

Figure 7 presents the effects of the parameters on the
containment factor 77. Eta increases as U^/U\ decreases or
as pi/p2 and Ri/R increase, indicating a reduction in the de-
pletion of the inner jet. Increase of NRSA or Nsc.z increases
77 because higher NR€,I implies lower viscous interaction and
higher Nsc,z results in slower diffusion.

^ T? = mass of species 1 in a given volume (between the en-
trance section and a section downstream) of the confining duct
divided by the mass of species 1 in the same volume had there
been no mixing. Expressed mathematically

I I puirdrdz / pp,nrRizzJo Jo /

o
o

0,5

R A D I U S r /R

Fig. 8 Axial velocity profiles; Ri/R = 0.563, ]YRe,2 = 1500.

Velocity and Mass Fraction Fields for Typical Runs

Figure 8 shows the development of the axial velocity pro-
files; the developing profiles of mass fraction o?i are presented
in Fig. 9. An increase in developing length results from a
decrease in U2/Ui or an increase in pi/p2. A decrease in
Uz/Ui leads to more gradual change of the centerline values,
i.e., slower mixing and wider jet. An experimental investi-
gation of coaxial turbulent mixing of heterogeneous jets has
been recently completed by Zawacki and Weinstein.15 The
measured effects of Uz/Ui and pi/p2 on the jet mixing agree
qualitatively with the prediction of this analysis.

For a few combinations of the flow parameters near the
extremes of the viscosity ratio range, a positive pressure
gradient or an oscillatory negative pressure gradient was
observed in the initial region. For these cases the fully
developed values agreed less favorably and it appears that
the initial region was most affected. This behavior is not
completely understood as yet and further investigation may
be necessary. Also, for the cases investigated, the effect
of change in /z2/Mi was small, so that no definite trend of this
effect could be established. The original aim of the von Mises
transformation or the 0 transformation was to obtain stable
solutions for a wide range of flow parameters. Experience
with a similar jet mixing problem in the r-z plane revealed
that the range in the \j/-z or the <j>-z plane was not much
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0.5 0,75

RADIUS r/R

Fig. 9 Mass fraction profiles; pi/p2 = 4.2, Ri/R = 0.563,
WRe.2 = 1500, ]YSc,2 = 1.52, M2/M1 = 1-48.

wider. Therefore, it may be worthwhile to solve the present
flow problem in the physical plane where nonuniform en-
trance profiles can be studied more conveniently.

Conclusions
The results provide detailed information of laminar, in-

compressible coaxial, confined jet mixing for most of the
parameters of practical interest and predict mixing for con-
fined flow configurations that are difficult to investigate
experimentally.

An increase in NR*,* or N$c,2 reduces mixing and at the
same time, results in decrease of mass fraction at the wall.
Also, a decrease in U*/U\ or an increase in pi/p2 decreases
mixing, while it simultaneously increases the mass fraction
at the wall. In the design of gas-core nuclear reactors,
minimum mixing as well as low wall mass fraction are de-
sired, hence, a compromise has to be made while choosing
the problem parameters. The findings that the length of
the mass fraction potential core Z/wi increases as Uz/Ui de-
creases and that the rate of mixing decreases as p\/pi increases
are in qualitative agreement with experimental observations15

of somewhat similar turbulent flows.

Hence, this study provides trends that may be useful in
understanding turbulent jet mixing and may yield informa-
tion concerning the hydrodynamics of gas-core nuclear reac-
tors. The numerical method has shown sufficient success
to warrant further development to study the effects of com-
pressibility and turbulence.
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